Un método de estimación puntual, con algunas propiedades teóricamente más fuertes que las del método MCO es el método de máxima verosimilitud (MV). Puesto que este método es ligeramente complicado, se analiza en el apéndice de este capítulo. Para el lector que sólo tiene un interés general, será suficiente con aclarar que si se ha supuesto ui normalmente distribuido, como lo hemos hecho por las razones ya expuestas, los estimadores MV y MCO de los coeficientes de regresión, los β, son idénticos y esto es válido para regresiones simples al igual que para las regresiones múltiples. El estimador MV σ² es Σu²i/n. Este estimador es sesgado, mientras que el estimador MCO de σ² = Σu²i/(n-2) como hemos visto, es insesgado. Pero, comparando estos dos estimadores de σ², se ve que a medida que el tamaño dela muestra n aumenta, los dos estimadores de σ² tienen a ser iguales. Por tanto, asintóticamente, (es decir, amedida que n crece indefinidamente), el estimador MV de σ² también es insesgado.
Puesto que el método de mínimos cuadrados con el supuesto adicional de normalidad de ui nos proporciona todas herramientas necesarias para llevar a cabo la estimación y las pruebas de hipótesis de los modelos de regresión lineal, no existe pérdida alguna para los lectores que no deseen continuar revisando el método de máxima verosimilitud debido a su ligera complejidad matemática.
No hay comentarios.:
Publicar un comentario