Busca en el Blog

lunes, 31 de enero de 2022

Naturaleza y fuentes de datos para el análisis económico

 El éxito de todo análisis econométrico depende a fi nal de cuentas de la disponibilidad de los datos recopilados. Por consiguiente, es muy importante dedicar algún tiempo a estudiar la naturaleza, las fuentes y las limitaciones de los datos para el análisis empírico.

domingo, 30 de enero de 2022

Naturaleza del análisis de regresión - Terminología y notación

Antes de proceder al análisis formal de la teoría de regresión abordaremos brevemente la terminología y la notación. En las publicaciones especializadas, los términos variable dependiente y variable explicativa se defi nen de varias maneras; a continuación se presenta una lista representativa:
Terminología y notación

Aunque es cuestión de preferencia personal y tradición, en este texto se utiliza la terminología de variable dependiente/variable explicativa, o la más neutral de regresada y regresora.

Si se estudia la dependencia de una variable respecto de una única variable explicativa, como el consumo que depende del ingreso real, dicho estudio se conoce como análisis de regresión simple, o con dos variables. Sin embargo, si se estudia la dependencia de una variable respecto de más de una variable explicativa, como el rendimiento de un cultivo, la lluvia, la temperatura, el Sol y los fertilizantes, se trata de un análisis de regresión múltiple. En otras palabras, en una regresión de dos variables sólo hay una variable explicativa, mientras que en la regresión múltiple hay más de una variable explicativa.

El término aleatorio es sinónimo de estocástico. Como ya vimos, una variable aleatoria o estocástica es la que toma cualquier conjunto de valores, positivos o negativos, con una probabilidad dada.9

A menos que se indique lo contrario, la letra Y representa la variable dependiente, y las X (X1, X2,…, Xk), las variables explicativas, con Xk como la k-ésima variable explicativa. Los subíndices i o t denotan la observación o valor i-ésimo o t-ésimo. Xki (o Xkt) denota la i-ésima (o la t-ésima) observación de la variable Xk. N (o T) representa el número total de observaciones o valores en la población, y n (o t), el número total de observaciones en una muestra. Por convención, se utiliza el subíndice de observación i para los datos transversales (es decir, información recopilada en un momento determinado), y el subíndice t, para datos de series de tiempo (es decir, información reunida a lo largo de un periodo). La naturaleza de datos transversales y de series de tiempo, así como el importante tema de la naturaleza y las fuentes de datos para el análisis empírico, se estudian en la siguiente sección.

miércoles, 26 de enero de 2022

Naturaleza del análisis de regresión - Regresión y correlación

El análisis de correlación se relaciona de manera estrecha con el de regresión, aunque conceptualmente los dos son muy diferentes. En el análisis de correlación, el objetivo principal es medir la fuerza o el grado de asociación lineal entre dos variables. El coefi ciente de correlación, que veremos en detalle en el capítulo 3, mide esta fuerza de asociación (lineal): por ejemplo, si se desea encontrar la correlación (coefi ciente) entre el hábito de fumar y el cáncer del pulmón; entre las califi caciones en exámenes de estadística y en exámenes de matemáticas; entre las califi caciones de bachillerato y de la universidad, y así sucesivamente. En el análisis de regresión, como ya mencionamos, no interesa ese tipo de medición. En cambio, se trata de estimar o predecir el valor promedio de una variable con base en los valores fi jos de otras. Así, quizá se desee predecir el promedio de las califi caciones en un examen de estadística a partir de la califi - cación de un estudiante en un examen de matemáticas.

La regresión y la correlación presentan diferencias fundamentales que vale la pena mencionar. En el análisis de regresión hay una asimetría en el tratamiento a las variables dependientes y explicativas. Se supone que la variable dependiente es estadística, aleatoria o estocástica, es decir, que tiene una distribución de probabilidad. Por otra parte, se asume que las variables explicativas tienen valores fi jos (en muestras repetidas),7 lo cual es explícito en la defi nición de regresión de la sección 1.2. Así, en la fi gura 1.2 se supuso que la variable de edad era fi ja en los niveles dados y se obtuvieron medidas de estatura en esos niveles. En el análisis de correlación, por otra parte, se tratan dos variables cualesquiera en forma simétrica; no hay distinción entre las variables dependiente y explicativa. Después de todo, la correlación entre las califi caciones de los exámenes de matemáticas y de estadística es la misma que la existente entre califi caciones de exámenes de estadística y de matemáticas. Además, las dos variables se consideran aleatorias. Como veremos, la mayor parte de la teoría de correlación parte del supuesto de aleatoriedad de las variables, mientras que la mayor parte de la teoría de regresión que expondremos en este texto está condicionada al supuesto de que la variable dependiente es estocástica y que las variables explicativas son fi jas o no estocásticas.8

sábado, 22 de enero de 2022

Naturaleza del análisis de regresión - Regresión y causalidad

 A pesar de que el análisis de regresión tiene que ver con la dependencia de una variable respecto de otras variables, esto no implica causalidad necesariamente. En palabras de Kendall y Stuart: “Una relación estadística, por más fuerte y sugerente que sea, nunca podrá establecer una conexión causal: nuestras ideas de causalidad deben provenir de estadísticas externas y, en último término, de una u otra teoría”.

En el ejemplo del rendimiento del cultivo citado, no hay una razón estadística para suponer que la lluvia no depende del rendimiento del cultivo. Considerar que el rendimiento del cultivo depende de la lluvia (entre otras cosas) se debe a cuestiones no estadísticas: el sentido común indica que la relación no puede ser a la inversa, pues no es posible controlar la lluvia mediante el rendimiento del cultivo.

En todos los ejemplos de la sección 1.2, lo que se debe notar es que una relación estadística por sí misma no puede, por lógica, implicar causalidad. Para aducir causalidad se debe acudir a consideraciones a priori o teóricas. Así, en el tercer ejemplo, es posible recurrir a la teoría económica para afi rmar que el consumo depende del ingreso real

miércoles, 19 de enero de 2022

Naturaleza del análisis de regresión - Relaciones estadísticas y relaciones deterministas

 En los ejemplos de la sección 1.2 se observa que en el análisis de regresión interesa lo que se conoce como dependencia estadística entre variables, no así la funcional o determinista, propia de la física clásica. En las relaciones estadísticas entre variables se analizan, en esencia, variables aleatorias o estocásticas,4 es decir, variables con distribuciones de probabilidad. Por otra parte, en la dependencia funcional o determinista también se manejan variables, pero no son aleatorias o estocásticas.

Por ejemplo, el rendimiento de un cultivo depende de la temperatura, lluvia, Sol y fertilizantes, y dicha dependencia es de naturaleza estadística porque las variables explicativas, si bien son importantes, no permiten al agrónomo predecir en forma exacta el rendimiento del cultivo debido a los errores propios de la medición de estas variables y a otra serie de factores (variables) que en conjunto afectan el rendimiento pero son difíciles de identifi car individualmente. De esta manera, habrá alguna variabilidad “intrínseca” o aleatoria en la variable dependiente, el rendimiento del cultivo, que no puede explicarse en su totalidad sin importar cuántas variables explicativas se consideren.

Los fenómenos deterministas, por otra parte, implican relaciones como la ley de la gravedad de Newton, la cual establece que toda partícula en el universo atrae a cualquier otra partícula con una fuerza directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia entre ellas. En términos matemáticos, F = k (m1m2/r 2), donde F = fuerza, m1 y m2 son las masas de las dos partículas, r = distancia y k = constante de proporcionalidad.

Otro ejemplo es el de la ley de Ohm, la cual postula que para conductores metálicos dentro de un intervalo limitado de temperatura, la corriente C es proporcional al voltaje V; es decir, C = (1-k)V, donde 1-k es la constante de proporcionalidad. Otros ejemplos de relaciones deterministas son la ley de los gases de Boyle, la ley de la electricidad de Kirchhoff y la ley del movimiento de Newton.

En este texto no interesan tales relaciones deterministas. Por supuesto, de haber errores de medición, por ejemplo, en la k de la ley de la gravedad de Newton, la relación que de otra forma habría sido determinista se convierte en una relación estadística. En esta situación es posible predecir la fuerza en forma aproximada sólo a partir de un valor dado de k (y m1, m2 y r), el cual contiene errores. La variable F se convierte en este caso en aleatoria.

martes, 11 de enero de 2022

Naturaleza del análisis de regresión - Interpretación moderna de la regresión - Ejemplo 8

Por último, un agrónomo tal vez se interese en estudiar la relación entre el rendimiento de un cultivo, digamos de trigo, y la temperatura, lluvia, cantidad de sol y fertilizantes. Un análisis de dependencia de ese tipo facilitaría la predicción o el pronóstico del rendimiento medio del cultivo según la información sobre las variables explicativas. 

El lector puede proporcionar una amplia gama de ejemplos similares de la dependencia de una variable respecto de otra o más variables. Las técnicas del análisis de regresión que se explican en este texto están diseñadas especialmente para estudiar dicha dependencia entre variables.

sábado, 8 de enero de 2022

Naturaleza del análisis de regresión - Interpretación moderna de la regresión - Ejemplo 7

 El director de marketing de una compañía tal vez quiera conocer la relación entre la demanda del producto de su compañía con el gasto de publicidad, por ejemplo. Un estudio de este tipo es de gran ayuda para encontrar la elasticidad de la demanda respecto de los gastos publicitarios, es decir, el cambio porcentual de la demanda en respuesta a un cambio de 1 por ciento, por ejemplo, en el presupuesto de publicidad. Saber esto sirve para determinar el presupuesto “óptimo” de publicidad.

jueves, 6 de enero de 2022

Naturaleza del análisis de regresión - Interpretación moderna de la regresión - Ejemplo 6

 En la economía monetaria se sabe que, si se mantienen constantes otros factores, cuanto mayor sea la tasa de infl ación π, menor será la proporción k del ingreso que la gente deseará mantener en forma de dinero, como se deduce de la figura 1.4. La pendiente de esta recta representa el cambio en k con un cambio en la tasa de inflación. Un análisis cuantitativo de esta relación permite al economista predecir la cantidad de dinero, como proporción del ingreso, que la gente deseará mantener con diversas tasas de inflación.

Interpretación moderna de la regresión


domingo, 2 de enero de 2022

Naturaleza del análisis de regresión - Interpretación moderna de la regresión - Ejemplo 5

 Un economista laboral quizá desee estudiar la tasa de cambio de los salarios monetarios o nominales en relación con la tasa de desempleo. Las cifras históricas aparecen en el diagrama de dispersión de la figura 1.3. La curva de esta figura es un ejemplo de la célebre curva de Phillips, que relaciona los cambios en los salarios nominales con la tasa de desempleo. Un diagrama de dispersión de este tipo permite al economista laboral predecir el cambio promedio en los salarios nominales con una cierta tasa de desempleo. Tal conocimiento sirve para establecer supuestos sobre el proceso inflacionario en una economía, pues es probable que los incrementos en los salarios monetarios se reflejen en incrementos de precios.