De la anterior exposición, y en especial de las fi guras 2.1 y 2.2, es claro que cada media condicional E(Y | Xi) es función de Xi, donde Xi es un valor dado de X. Simbólicamente,
E(Y | Xi ) = f (Xi ) (2.2.1)
donde ƒ(Xi) denota alguna función de la variable explicativa X. En el ejemplo, E(Y | Xi) es una función lineal de Xi. La ecuación (2.2.1) se conoce como función de esperanza condicional (FEC), función de regresión poblacional (FRP) o regresión poblacional (RP), para abreviar. Dicha función sólo denota que el valor esperado de la distribución de Y dada Xi se relaciona funcionalmente con Xi. En otras palabras, dice cómo la media o respuesta promedio de Y varía con X.
¿Qué forma adopta la función ƒ(Xi)? Esta pregunta es importante porque en una situación real no disponemos de toda la población para efectuar el análisis. La forma funcional de la FRP es por consiguiente una pregunta empírica, aunque en casos específicos la teoría tiene algo que decir. Por ejemplo, un economista puede plantear que el consumo manifiesta una relación lineal con el ingreso. Por tanto, como primera aproximación o hipótesis de trabajo, podemos suponer que la FRP E(Y | Xi) es una función lineal de Xi, del tipo
E(Y | Xi ) = β1 + β2Xi (2.2.2)
donde β1 y β2 son parámetros no conocidos pero fijos que se denominan coeficientes de regresión; β1 y β2 se conocen también como coeficientes de intersección y de pendiente, respectivamente. La ecuación (2.2.1) se conoce como función de regresión poblacional lineal. En la bibliografía aparecen otras expresiones, como modelo de regresión poblacional lineal o sólo regresión poblacional lineal. En lo sucesivo, consideraremos sinónimos los términos regresión, ecuación de regresión y modelo de regresión.
En el análisis de regresión, la idea es estimar las FRP como la ecuación (2.2.2); es decir, estimar los valores no conocidos de β1 y β2 con base en las observaciones de Y y X. Veremos este tema con más detalle en el capítulo 3.