El significado de "aceptar" o "rechazar" una hipótesis.
Si, con base en una prueba de significancia, por ejemplo, la prueba t, se decide "aceptar" la hipótesis nula, todo lo que se está diciendo es que con base en la evidencia dada por la muestra, no existe razón para rechazarla: no se está diciendo que la hipótesis nula sea verdadera con absoluta certeza. Por qué? para responder esto, téngase en cuenta el ejemplo consumo-ingreso y supongase que Ho: β2 (PMC) = 0.50. Ahora, el valor estimado de la PMC es β2 = 0.5091 con un se (β2) = 0.0357. Entonces con base en la prueba t, se encuentra que t = (0.5091-0.50)/0.0357= 0.25, que es no significativo, es decir, para un α = 5%. Por consiguiente, se dice que "aceptamos" Ho. Pero ahora supóngase Ho: β2 = 0.48. Aplicando la prueba t, se obtiene t = (0.5091 -0.48)/0.0357 = 0.82, el cual tampoco es estadísticamente significativo. Entonces, se dice ahora que "se acepta" esta Ho. Cuál de estas dos hipótesis nulas es la "verdadera"? No se sabe. Por consiguiente, en la "aceptación" de una hipótesis nula se debe tener presente siempre que pueda existir otra hipótesis nula igualmente compatible con los datos. Es preferible, por tanto, decir que se puede aceptar la hipótesis nula en lugar de decir que se la acepta. Mejor aún.
.... de la misma manera que un corte pronuncia un veredicto de "no culpable" en lugar de decir "inocente", así la conclusión de un estadístico de prueba es la de "no rechazar" en lugar de "aceptar"
No hay comentarios.:
Publicar un comentario