Dadas las hipótesis nula y alterna, probar su significancia estadística no debe seguir siendo un misterio. Pero, Cómo se formulan estas hipótesis? No existen reglas específicas. Muy frecuentemente el fenómeno bajo estudio sugerirá la forma de la hipótesis nula y alterna. Por ejemplo, en el ejercicio 5.16 se pide estimar la línea del mercado de capitales (LMC) de la teoría de portafolio, que postula que Ei = β1 + β2σi donde E = retorno esperado sobre el portafolio y σ = la desviación estándar del retorno, una medida de riesgo. Puesto que se espera que el retorno y el riesgo estén relacionados positivamente entre mayor sea el riesgo, más alto será el retorno; la hipótesis alterna natural a la hipótesis nula, β2 = 0, sería β2 > 0. Es decir, no se considerar'n valores de β2 menores de cero.
Pero considérese el caso de la demanda de dinero. Como se demostrará más adelante, uno de los determinantes importantes de la demanda de dinero es el ingreso. Estudios anteriores de las funciones de demanda de dinero han mostrado que la elasticidad ingreso de la demanda de dinero (el cambio porcentual en la demanda de dinero por un cambio porcentual de 1% en el ingreso) ha estado típicamente dentro de un rango de 0.7 a 1.3. Por consiguiente, en un nuevo estudio de la demanda de dinero, si se postula que el coeficiente β2 de la elasticidad ingreso es 1, la hipótesis alterna podría ser que β2 ≠1, una hipótesis alterna de dos lados.
Por tanto, las expectativas teóricas o el trabajo empírico previo o ambos pueden ser la base para la formulación de hipótesis. Sin embargo, sin importar la forma como se postulen las hipótesis, es extremadamente importante que el investigador plantee estas hipótesis antes de llevar a cabo la investigación empírica. De lo contrario, él o ella serán culpables de razonamientos circulares o de profecias autocumplidas. Es decir, si se formulara la hipótesis después de examinar los resultados empíricos, podría presentarse la tentación de formular la hipótesis de tal manera que justifique los resultados obtenidos. Una práctica así debe ser evitada a cualquier costo, al menos para salvar la objetividad científica.
No hay comentarios.:
Publicar un comentario