c) Sin embargo, los coeficientes de correlación de orden cero pueden ser malos indicadores en modelos que contiene más de dos variables X, puesto que es posible tener correlaciones bajas de orden cero y encontrar aún alta multicolinealidad. En situaciones como éstas pueden ser necesario examinar los coeficientes de correlación parcial.
d) Si R² es algo pero las correlaciones parciales son bajas, la multicolinealidad es una posiblidad. Aquí hay una o más variables que pueden ser superfluas. Pero si R² es alto las correlaciones parciales son altas también, la multicolinealidad puede no ser fácilmente detectable. También como lo señalan C. Robert, Krishna Kumar, John O'Hagan y Brendan Mc CAbe, hay algunos problemas estadísticos con la prueba correlación parcial sugerida por FArrar y Glauber.
e) Por consiguiente, se puede regresar cada una de las variables Xi sobre las variables X restantes en el modelo y encontrar los coeficientes de determinación correspondientes R²i. Un R²i elevado sugeriría que Xi está altamente correlacionado con el resto de las X. Así, se puede eliminar esta Xi del modelo, siempre y cuando conduzca a un sesgo de especificación grave.
No hay comentarios.:
Publicar un comentario