En la parte 1 de este texto se presentan los modelos de regresión uniecuacionales. En estos modelos se expresa una variable, llamada dependiente, como función lineal de una o más variables, llamadas explicativas. En modelos de este tipo se supone que si existen relaciones causales entre las variables dependientes y las explicativas, éstas van en una sola dirección: de las variables explicativas a la variable dependiente.
En el capítulo 1 se hace una exposición relacionada con la interpretación, tanto histórica como moderna, del término regresión y se ilustran las diferencias entre las dos interpretaciones con diversos ejemplos tomados de la economía y de otros campos.
En el capítulo 2 se presentan algunos conceptos fundamentales del análisis de regresión con ayuda del modelo de regresión lineal con dos variables, en el cual la variable dependiente se expresa como función lineal de una sola variable explicativa.
En el capítulo 3 continúa el manejo del modelo con dos variables y se introduce lo que se conoce como el modelo clásico de regresión lineal, que tiene diversos supuestos simplifi cadores. Con estos supuestos se presenta el método de mínimos cuadrados ordinarios (MCO) para estimar los parámetros del modelo de regresión con dos variables. La aplicación del método de MCO es sencilla y tiene algunas propiedades estadísticas muy convenientes.
En el capítulo 4 se introduce el modelo clásico de regresión lineal normal (de dos variables), modelo que supone que la variable aleatoria dependiente sigue una distribución de probabilidad normal. Con este supuesto los estimadores MCO obtenidos en el capítulo 3 adquieren algunas propiedades estadísticas más sólidas que las de los modelos clásicos de regresión lineal no normales. Estas propiedades permiten la inferencia estadística y, en particular, las pruebas de hipótesis.
El capítulo 5 se dedica a las pruebas de hipótesis, y se pretende averiguar si los coefi cientes de regresión estimados son compatibles con los valores hipotéticos de tales coefi cientes, valores hipotéticos sugeridos por la teoría y/o por el trabajo empírico previo.
En el capítulo 6 se consideran algunas extensiones del modelo de regresión con dos variables. En particular, se analizan temas como: 1) regresión a través del origen, 2) escalas y unidades de medición, y 3) formas funcionales de modelos de regresión, como doblelogarítmicos, semilogarítmicos y recíprocos.
En el capítulo 7 se considera el modelo de regresión múltiple, en el cual hay más de una variable explicativa, y se muestra cómo se extiende el método MCO para estimar los parámetros de tales modelos.
En el capítulo 8 se amplían los conceptos del capítulo 5 al modelo de regresión múltiple y se señalan algunas complicaciones propias de diversas variables explicativas.
El capítulo 9, que trata sobre variables explicativas dicótomas o cualitativas, concluye la primera parte del texto. Este capítulo destaca que no todas las variables explicativas necesitan ser cuantitativas (por ejemplo, en escala de razón). Variables como género, raza, religión, nacionalidad y lugar de residencia no son cuantifi cables de manera directa, si bien desempeñan un valioso papel en la explicación de muchos fenómenos económicos.
No hay comentarios.:
Publicar un comentario