Busca en el Blog

lunes, 25 de octubre de 2021

Metodología de la econometría - Tipos de econometría

 Como deja entrever el esquema de clasifi cación en la fi gura I.5, la econometría se divide en dos amplias categorías: econometría teórica y econometría aplicada. En cada categoría se puede tratar la materia según la tradición clásica o la bayesiana. En este libro destacamos el enfoque clásico. Para el enfoque bayesiano, el lector puede consultar las referencias al fi nal del capítulo.


La econometría teórica se relaciona con la elaboración de métodos apropiados para medir las relaciones económicas especifi cadas por los modelos econométricos. En este aspecto, la econometría se apoya en gran medida en la estadística matemática. Por ejemplo, un método muy popular en este libro es el de mínimos cuadrados. La econometría teórica debe expresar los supuestos de este método, sus propiedades y lo que les sucede cuando no se cumplen uno o más de los supuestos del método.

En la econometría aplicada utilizamos herramientas de la econometría teórica para estudiar algunos campos especiales de la economía y los negocios, como la función de producción, la función de inversión, las funciones de demanda y de oferta, la teoría de portafolio, etcétera. 

Este libro se refi ere en gran parte al desarrollo de los métodos econométricos, sus supuestos, usos y limitaciones. Ilustramos estos métodos con ejemplos en diversas áreas de la economía y los negocios. Pero éste no es un libro de econometría aplicada en el sentido de que investigue a fondo un campo particular de aplicación económica. Para esa labor existen textos especializados. Al fi nal de esta obra proporcionamos referencias de algunos de ellos.

jueves, 21 de octubre de 2021

Metodología de la econometría - Elección entre modelos rivales

 Cuando una dependencia gubernamental (digamos, el Departamento de Comercio de Estados Unidos) recopila datos económicos, como los de la tabla I.1, no necesariamente tiene una teoría económica en mente. Por tanto, ¿cómo sabe en realidad que los datos respaldan la teoría keynesiana de consumo? ¿Se debe acaso a que la función consumo keynesiana (es decir, la línea de regresión) de la figura I.3 se aproxima mucho a los puntos reales que representan a los datos? ¿Será posible que otro modelo (teoría) de consumo se ajuste igual de bien a los datos? Por ejemplo, Milton Friedman elaboró un modelo de consumo, la hipótesis de ingreso permanente.15 Robert Hall también creó un modelo de consumo, llamado hipótesis del ciclo de vida del ingreso permanente. ¿Alguno o ambos modelos pueden también ajustarse a los datos de la tabla I.1?

En resumen, la interrogante con que se enfrenta en la práctica un investigador es: ¿cómo elegir entre modelos o hipótesis que compiten entre sí, dado un fenómeno determinado, como la relación entre consumo e ingreso? Como observa Miller:

Ningún encuentro con los datos signifi ca un paso adelante hacia la confi rmación genuina, a menos que la hipótesis se las arregle mejor con esos datos que algún rival natural. . . . Lo que fortalece aquí a una hipótesis es una victoria que, al mismo tiempo, es una derrota para una posible rival.17

Entonces, ¿cómo elegir entre los varios modelos o hipótesis en disputa? Aquí Clive Granger da un consejo que vale la pena:

Me gustaría proponer que en el futuro, cuando a uno se le presente una nueva teoría o modelo empírico, se plantee las siguientes preguntas:

i) ¿Qué propósito tiene? ¿Qué tipo de decisiones económicas ayuda a tomar?

ii) ¿Existe alguna evidencia presente que me permita evaluar su calidad en comparación con teorías o modelos alternos?

Pienso que si se les da la debida atención a estos planteamientos se fortalecerá la investigación y el análisis económicos.

Conforme avancemos en este libro, saldrán al paso diversas hipótesis que compiten entre sí y que tratan de explicar varios fenómenos económicos. Por ejemplo, los estudiantes de economía conocen ya el concepto de la función producción, que representa básicamente una relación entre la producción y los insumos (capital y trabajo). En la bibliografía, dos funciones producción muy conocidas son la de Cobb-Douglas y la de elasticidad constante de sustitución. Con los datos de producción e insumos tendremos que averiguar cuál de las dos funciones producción, si acaso alguna lo hace, se ajusta bien a los datos.

La metodología econométrica clásica, consistente en los ocho pasos que acabamos de presentar, es neutral en el sentido de que sirve para probar cualquiera de estas hipótesis rivales.

¿Es posible elaborar una metodología lo bastante amplia para abarcar hipótesis contendientes? La respuesta implica un tema polémico e intrincado que analizaremos en el capítulo 13, tras entender la teoría econométrica necesaria.

miércoles, 13 de octubre de 2021

Metodología de la econometría - Uso del modelo para fines de control o de políticas

 Suponga que tenemos la función keynesiana de consumo estimada dada en (I.3.3). Suponga además que el gobierno considera que un nivel de gasto de aproximadamente 8 750 (miles de millones de dólares de 2000) mantendrá la tasa de desempleo en su nivel actual de cerca de 4.2 por ciento (estimación para principios del 2006). ¿Qué nivel de ingreso garantizará la cantidad de gasto de consumo fi jado como meta?

Si los resultados de la regresión dados en la ecuación (I.3.3) parecen razonables, la aritmética simple mostrará que

8 750 = −299.5913 + 0.7218(PIB2006) (I.3.6)

que da X = 12 537, aproximadamente. Es decir, un nivel de ingresos de alrededor de 12 537 (miles de millones) de dólares, con una PMC de cerca de 0.72, producirá un gasto aproximado de 8 750 millones de dólares.

Como indican estos cálculos, un modelo estimado sirve para fi nes de control o de políticas públicas. Mediante una mezcla apropiada de política fi scal y monetaria, el gobierno puede manejar la variable de control X para producir el nivel deseado de la variable objetivo Y. La figura I.4 resume la anatomía de la creación de los modelos econométricos clásicos. 


lunes, 11 de octubre de 2021

Metodología de la econometría - Pronóstico o predicción

 Si el modelo escogido no refuta la hipótesis o la teoría en consideración, servirá para predecir el (los) valor(es) futuro(s) de la variable dependiente Y, o de pronóstico, con base en el (los) valor(es) futuro(s) conocido(s) o esperado(s) de la variable explicativa, o predictora, X.

Para ilustrarlo, suponga que queremos predecir la media del gasto de consumo para 2006. El valor del PIB para 2006 fue de 11 319.4 millones de dólares.14 Colocamos esta cifra del PIB en el lado derecho de la ecuación (I.3.3) y obtenemos:


o casi 7 870 millones de dólares. Por tanto, con ese valor del PIB, la media o el promedio del gasto de consumo previsto es de alrededor de 7 870 millones de dólares. El valor real del gasto de consumo registrado en 2006 fue de 8 044 millones de dólares. El modelo estimado (I.3.3), por tanto, subpredijo el gasto de consumo real por casi 174 000 millones de dólares. Se diría que el error de predicción es de aproximadamente 174 000 millones de dólares, que representa alrededor de 1.5% del valor real del PIB para 2006. Cuando analicemos a profundidad el modelo de regresión lineal en los siguientes capítulos, trataremos de averiguar si un error de esa naturaleza es “pequeño” o “grande”. Pero lo que ahora importa es observar que tales errores de predicción son inevitables, dada la naturaleza estadística del análisis.

Existe otro uso del modelo estimado (I.3.3). Suponga que el presidente decide proponer una reducción del impuesto sobre la renta. ¿Cuál será el efecto de dicha política en el ingreso y por consiguiente en el gasto de consumo, y a fi nal de cuentas en el empleo? Suponga que como resultado de estos cambios de política se incrementa el gasto en inversión. 

¿Cuál será el efecto en la economía? De acuerdo con la teoría macroeconómica, el cambio en el ingreso generado por un cambio equivalente a un dólar, por ejemplo, en el gasto en inversión está dado por el multiplicador del ingreso (M), el cual se define como


Si utilizamos la PMC de 0.72 obtenida en la ecuación (I.3.3), este multiplicador se convierte en
M = 3.57. Es decir, un aumento (o reducción) de un dólar en la inversión al final generará un incremento (o reducción) de más de tres veces en el ingreso; advierta que el multiplicador demora
algún tiempo en actuar.

El valor crítico en este cálculo es la PMC, pues M depende de él. Y este valor estimado de la PMC se obtiene de modelos de regresión como el de la ecuación (I.3.3). Así, un valor estimado cuantitativo de la PMC proporciona información valiosa para fi nes de políticas públicas. Al conocer la PMC, se puede predecir el curso futuro del ingreso, el gasto de consumo y el empleo que sigue a un cambio en las políticas fi scales del gobierno.




sábado, 9 de octubre de 2021

Metodología de la econometría - Pruebas de hipótesis

 En el supuesto de que el modelo ajustado sea una aproximación razonablemente buena de la realidad, tenemos que establecer criterios apropiados para comprobar si los valores estimados obtenidos en una ecuación como la (I.3.3), por ejemplo, concuerdan con las expectativas de la teoría que estamos probando. De acuerdo con los economistas “positivos”, como Milton Friedman, una teoría o hipótesis no verificable mediante la evidencia empírica no puede ser admisible como parte de la investigación científica.

Como ya señalamos, Keynes esperaba que la PMC fuera positiva pero menor que 1. En el ejemplo observamos que la PMC es alrededor de 0.72. Pero antes de aceptar este resultado como confi rmación de la teoría keynesiana de consumo, debemos averiguar si esta estimación está lo bastante abajo de la unidad para convencernos de que no se trata de un suceso debido al azar o de una peculiaridad de los datos. En otras palabras, ¿es 0.72 estadísticamente menor que 1? Si lo es, puede apoyar la teoría de Keynes.

Tal confirmación o refutación de las teorías económicas con fundamento en la evidencia muestral se basa en una rama de la teoría estadística conocida como inferencia estadística (pruebas de hipótesis). A lo largo de este libro veremos cómo realizar en la práctica este proceso de inferencia.

viernes, 8 de octubre de 2021

Metodología de la econometría - Estimación del modelo econométrico

 Ahora que tenemos los datos, la siguiente labor es estimar los parámetros de la función consumo. La estimación numérica de los parámetros da contenido empírico a la función consumo. En el capítulo 3 explicaremos el mecanismo real para estimar los parámetros. Por el momento, note que la técnica estadística conocida como análisis de regresión es la herramienta principal para obtener las estimaciones. Con esta técnica y los datos de la tabla I.1 obtuvimos los siguientes valores estimados de β1 y β2, a saber, −299.5913 y 0.7218. Así, la función consumo estimada es 


El acento circunflejo (sombrero) sobre Y indica que es un valor estimado.11 En la figura I.3 se muestra la función consumo estimada (es decir, la línea de regresión).



Como se aprecia en la fi gura I.3, la línea de regresión se ajusta bien a los datos, pues los puntos que corresponden a los datos están muy cercanos a ella. En esta gráfi ca vemos que de 1960 a 2005 el coeficiente de la pendiente (es decir, la PMC) fue de alrededor de 0.72, lo que indica que para el periodo muestral un incremento de un dólar en el ingreso real produjo, en promedio, un incremento cercano a 72 centavos en el gasto de consumo real.12 Decimos “en promedio” porque la relación entre consumo e ingreso es inexacta; como se deduce de la fi gura I.3, no todos los puntos correspondientes a los datos están exactamente en la recta de regresión. Con palabras sencillas, podemos decir que, de acuerdo con los datos, el promedio o media del gasto de consumo aumentó alrededor de 72 centavos por cada dólar de incremento en el ingreso real.

miércoles, 6 de octubre de 2021

Metodología de la econometría - Obtención de información

 Para estimar el modelo econométrico dado en la ecuación (I.3.2), esto es, para obtener los valores numéricos de β1 y β2, son necesarios los datos. Aunque tendremos más que decir en el siguiente capítulo sobre la importancia crucial de los datos para el análisis económico, por el momento observemos unas cifras relacionadas con la economía de Estados Unidos de 1960 a 2005, que se presentan en la tabla I.1. La variable Y en esta tabla es el gasto de consumo personal (GCP) agregado (para la economía en su conjunto), y la variable X, el producto interno bruto (PIB), una medida del ingreso agregado, ambos medidos en miles de millones de dólares de 2000. Por consiguiente, los datos están en términos “reales”, es decir, se midieron en precios constantes (2000). Estos datos se graficaron en la figura I.3 (cf. fi gura I.2). Por el momento, haga caso omiso de la recta trazada en la figura.