La ecuación (2) se conoce como la función logarítmica de verosimilitud restringida (FLVR) por haber sido estimada con la restricción de que a priori α3 es cero, mientras que la ecuación (1) se conoce como la FV logarítmica no restringida (FLVNR) por que a priori no se han impuesto restricciones sobre los parámetros. Para probar la validez de la restricción a priori de que α3 sea cero, la prueba RV produce el siguiente estadístico de prueba:
λ = 2(FLVNR - FLVR)
donde FLVNR y FLVR son, la función logarítmica de verosimilitud no restringida [ecuación (1)] y la función logarítmica de verosimilitud restringida [ecuación (2)], respectivamente. Si el tamaño de la muestra es grande, puede demostrarse que el estadístico de prueba λ dado en (3), sigue una distribución ji cuadrado (X²) con un número de g de l igual al número de restricciones impuestas bajo la hipótesis nula, 1 en el presente caso.
No hay comentarios.:
Publicar un comentario