DEl análisis anterior es claro que eliminar una variable del modelo para aliviar el problema de la multicolinealidad puede producir un sesgo de especificación. Por tanto, el remedio puede ser peor que la enfermedad en algunas situaciones porque, mientras que la multicolinealidad puede obstaculizar la estimación precisa de los parámetros del modelo, la omisión de una variable puede llevar a graves equivocaciones con respecto a los verdaderos valores de los parámetros. Recuérdese que los estimadores MCO son MELI a pesar de la presencia de multicolinealidad perfecta.
Busca en el Blog
domingo, 19 de octubre de 2014
Eliminación de una(s) variable(s) y el sesgo de especificación.(II)
DEl análisis anterior es claro que eliminar una variable del modelo para aliviar el problema de la multicolinealidad puede producir un sesgo de especificación. Por tanto, el remedio puede ser peor que la enfermedad en algunas situaciones porque, mientras que la multicolinealidad puede obstaculizar la estimación precisa de los parámetros del modelo, la omisión de una variable puede llevar a graves equivocaciones con respecto a los verdaderos valores de los parámetros. Recuérdese que los estimadores MCO son MELI a pesar de la presencia de multicolinealidad perfecta.
No hay comentarios.:
Publicar un comentario