Volviendo a la significancia estadística de los coeficientes estimados, a partir de (9.10.14) se observa que cada uno de los coeficientes estimados es estadísticamente significativo individualmente, a un nivel de significancia del 5% por ejemplo: Las razones entre los coeficientes estimados y sus errores estándar (es decir, las razones t) son 3.83421, 15.61077 y 2.69598, respectivamente. Utilizando una prueba t de dos colas al nivel de significancia del 5%, se observa que el valor t crítico para 12 g de l es 2.179. Cada uno de los valores t calculados excede este valor crítico. Por tanto, a nivel individual, se puede rechazar l ahipótesis nula de que el verdadero valor poblacional del coeficiente relevante es cero.
Como se anotó anteriormente, no es posible aplicar la prueba t usual para verificar la hipótesis de que β2 = β3 = 0 simultaneamente, porque el procedimiento de prueba t supone que se toma una muestra independiente cada vez que se aplica una prueba t. Si se utiliza la misma muestra para probar la hipótesis sobre β2 y β3 simultáneamente, es probable que los estimadores β2 y β3 estén correlacionados, violando así el supuesto en el cual se basa el procedimiento de la prueba t^9. En realidad, la matriz de varianza-covarianza de β dada en (9.10.9) muestra que los estimadores β2 y β3 están correlacionados negativamente (la covarianza entre las dos es -0.13705). Por tanto, no se utiliza la prueba t para probar la hipótesis nula de que β2 = β3 = 0.
No hay comentarios.:
Publicar un comentario