Para ilustrar, recuérdese el ejemplo consumo-ingreso. Dad la hipótesis nula de que la verdadera PMC es 0.3, se obtuvo un valor t de 5.86 en (5.7.4), Cual es el valor ρ o "p-value" de obtener un valor t igual o superior a 5.86? En la tabla t del apéndice D, se observa que para 8 g de l la probabilidad de obtener tal valor t debe estar muy por debajo de 0.001 (una cola) o 0.002 (dos colas). Mediante el uso del computador, puede mostrarse que la probabilidad de obtener un valor t mayor o igual a 5.86 (8 g de l) es alrededor de 0.000189. Este valor ρ del estadístico t observado. Este nivel de significancia observado o exacto del estadístico t es mucho menor que los niveles de significancia del 1%, del 5% o del 10% fijados convencional y arbitrariamente. De hecho, si fueramos a utilizar el valor ρ recién calculado y rechazar la hipótesis nula que la verdera PMC es 0.3, la probabilidad de que se cometa un error tipo I es sólo de cerca de 0,02%, es decir, solamente 2 en 10,000!
Busca en el Blog
lunes, 9 de diciembre de 2013
Nivel exacto de significancia: Valor ρ o "P-value" (I)
Para ilustrar, recuérdese el ejemplo consumo-ingreso. Dad la hipótesis nula de que la verdadera PMC es 0.3, se obtuvo un valor t de 5.86 en (5.7.4), Cual es el valor ρ o "p-value" de obtener un valor t igual o superior a 5.86? En la tabla t del apéndice D, se observa que para 8 g de l la probabilidad de obtener tal valor t debe estar muy por debajo de 0.001 (una cola) o 0.002 (dos colas). Mediante el uso del computador, puede mostrarse que la probabilidad de obtener un valor t mayor o igual a 5.86 (8 g de l) es alrededor de 0.000189. Este valor ρ del estadístico t observado. Este nivel de significancia observado o exacto del estadístico t es mucho menor que los niveles de significancia del 1%, del 5% o del 10% fijados convencional y arbitrariamente. De hecho, si fueramos a utilizar el valor ρ recién calculado y rechazar la hipótesis nula que la verdera PMC es 0.3, la probabilidad de que se cometa un error tipo I es sólo de cerca de 0,02%, es decir, solamente 2 en 10,000!
No hay comentarios.:
Publicar un comentario