Así, las pruebas t y F proporcionan dos formas alternas, pero complementarias, de probar la hipótesis nula que β2 = 0. Si este es el caso, por qué no simplemente confiar en la prueba t y no preocuparse por la prueba F y por el análisis de varianza que lo acompaña? Para el modelo de dos variables, realmente no hay necesidad de recurrir a la prueba F. Pero cuando se considere el tema de la regresión múltiple, se verá que la prueba F tiene diversas aplicaciones interesantes que hacen que sea un método muy útil y poderoso de demostrar hipótesis estadísticas.
Busca en el Blog
miércoles, 18 de diciembre de 2013
Análisis de regresión y análisis de varianza (V)
Así, las pruebas t y F proporcionan dos formas alternas, pero complementarias, de probar la hipótesis nula que β2 = 0. Si este es el caso, por qué no simplemente confiar en la prueba t y no preocuparse por la prueba F y por el análisis de varianza que lo acompaña? Para el modelo de dos variables, realmente no hay necesidad de recurrir a la prueba F. Pero cuando se considere el tema de la regresión múltiple, se verá que la prueba F tiene diversas aplicaciones interesantes que hacen que sea un método muy útil y poderoso de demostrar hipótesis estadísticas.
No hay comentarios.:
Publicar un comentario